Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2917-2920, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262243

RESUMO

Discrete frequency-bin entanglement is an essential resource for applications in quantum information processing. In this Letter, we propose and demonstrate a scheme to generate discrete frequency-bin entanglement with a single piece of periodically poled lithium niobate waveguide in a modified Sagnac interferometer. Correlated two-photon states in both directions of the Sagnac interferometer are generated through cascaded second-order optical nonlinear processes. A relative phase difference between the two states is introduced by changing the polarization state of pump light, thus manipulating the two-photon state at the output of the Sagnac interferometer. The generated two-photon state is sent into a fiber polarization splitter, and then a pure discrete frequency-bin entangled two-photon state is obtained by setting the pump light. The frequency entanglement property is measured by a spatial quantum beating with a visibility of 96.0±6.1%. The density matrix is further obtained with a fidelity of 98.0±3.0% to the ideal state. Our demonstration provides a promising method for the generation of pure discrete frequency-bin entanglement at the telecom band, which is desired in quantum photonics.

2.
Light Sci Appl ; 12(1): 115, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164962

RESUMO

Quantum teleportation can transfer an unknown quantum state between distant quantum nodes, which holds great promise in enabling large-scale quantum networks. To advance the full potential of quantum teleportation, quantum states must be faithfully transferred at a high rate over long distance. Despite recent impressive advances, a high-rate quantum teleportation system across metropolitan fiber networks is extremely desired. Here, we demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1 ± 0.4 Hz over 64-km-long fiber channel. An average single-photon fidelity of ≥90.6 ± 2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime. Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.

3.
Opt Express ; 31(5): 8152-8159, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859931

RESUMO

In a photon-counting fiber Bragg grating (FBG) sensing system, a shorter probe pulse width reaches a higher spatial resolution, which inevitably causes a spectrum broadening according to the Fourier transform theory, thus affecting the sensitivity of the sensing system. In this work, we investigate the effect of spectrum broadening on a photon-counting FBG sensing system with a dual-wavelength differential detection method. A theoretical model is developed, and a proof-of-principle experimental demonstration is realized. Our results give a numerical relationship between the sensitivity and spatial resolution at the different spectral widths of FBG. In our experiment, for a commercial FBG with a spectral width of 0.6 nm, an optimal spatial resolution of 3 mm and a corresponding sensitivity of 2.03 nm-1 can be achieved.

4.
Opt Express ; 29(21): 33456-33466, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809157

RESUMO

Strong absorption of the full spectrum of sunlight at high temperatures is desired for photothermal devices and thermophotovoltaics. Here, we experimentally demonstrate a thin-film broadband absorber consisting of a vanadium nitride (VN) film and a SiO2 anti-reflective layer. Owing to the intrinsic high loss of VN, the fabricated absorber exhibits high absorption over 90% in the wide range of 400-1360 nm. To further enhance the near-infrared absorption, we also propose a metamaterial absorber by depositing patterned VN square patches on the thin-film absorber. An average absorption of 90.4% over the range of 400-2500 nm is achieved due to the excitation of broad electric dipole resonance. Both thin-film and metamaterial absorbers are demonstrated to possess excellent incident angle tolerances (up to 60°) and superior thermal stability at 800 ℃. The proposed refractory VN absorbers may be potentially used for solar energy harvesting, thermal emission, and photodetection.

5.
Opt Express ; 23(7): 8430-40, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968682

RESUMO

We experimentally investigate the soliton formation and dynamics in the nonlinear propagation of the generated signal and probe beams in four-wave mixing (FWM) process with atomic coherence in a three-level atomic system, under the competition between focusing and defocusing nonlinearities, as well as between gain and dissipation, due to the third- and fifth-order nonlinear susceptibilities with opposite signs. With multi-parameter controllability and nonlinear competition in the system, fundamental, dipole, and azimuthally-modulated vortex FWM solitons can transform mutually from one to the other. Such investigations have potential applications in optical pattern formation and control, and all-optical communication.

6.
Opt Lett ; 39(7): 2109-12, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686687

RESUMO

In this Letter, the generation of a 1.5 µm discrete frequency-entangled two-photon state is realized based on a piece of commercial polarization-maintaining fiber (PMF). It is connected with a polarization beam splitter to realize a modified Sagnac fiber loop (MSFL). Correlated two-photon states are generated through a spontaneous four-wave-mixing process along the two propagation directions of the MSFL, and output from the MSFL with orthogonal polarizations. Their quantum interference is realized through a 45° polarization collimation between polarization axes of PMFs inside and outside the MSFL, while their phase difference is controlled by the polarization state of the pump light. The frequency-entangled property of the two-photon state is demonstrated by a spatial quantum beating experiment with a fringe visibility of 98.2±1.3%, without subtracting the accidental coincidence counts. The proposed scheme generates a 1.5 µm discrete frequency-entangled two-photon state in a polarization-maintaining way, which is desired in practical quantum light sources.

7.
Opt Express ; 21(10): 11728-46, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736395

RESUMO

We investigate the way to control multi-wave mixing (MWM) process in Rydberg atoms via the interaction between Rydberg blockade and light field dressing effect. Considering both of the primary and secondary blockades, we theoretically study the MWM process in both diatomic and quadratomic systems, in which the enhancement, suppression and avoided crossing can be affected by the atomic internuclear distance or external electric field intensity. In the diatomic system, we also can eliminate the primary blockade by the dressing effect. Such investigations have potential applications in quantum computing with Rydberg atom as the carrier of qubit.


Assuntos
Luz , Modelos Teóricos , Espalhamento de Radiação , Simulação por Computador
8.
Opt Lett ; 37(21): 4507-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23114345

RESUMO

In a numerical investigation, we demonstrate the existence and curious evolution of vortices in a ladder-type three-level nonlinear atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the dressing effect. We find that the number of beads and topological charge of the incident beam, as well as its size, greatly affect the formation and evolution of vortices. To determine the number of induced vortices and the corresponding rotation direction, we give common rules associated with the initial conditions coming from various incident beams.

9.
Opt Express ; 20(13): 14168-82, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714480

RESUMO

We report the observation of multi-component dipole and vortex vector solitons composed of eight coexisting four-wave mixing (FWM) signals in two-level atomic system. The formation and stability of the multi-component dipole and vortex vector solitons are observed via changing the experiment parameters, including the frequency detuning, powers, and spatial configuration of the involved beams and the temperature of the medium. The transformation between modulated vortex solitons and rotating dipole solitons is observed at different frequency detunings. The interaction forces between different components of vector solitons are also investigated.


Assuntos
Modelos Teóricos , Refratometria/instrumentação , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...